Forschungsarbeiten im Bereich Informationssicherheit haben eine hohe gesellschaftliche Relevanz und umfassen an der FIDS
Daneben werden an der FIDS angrenzende Forschungsthemen wie die Umsetzung des Rechts auf Privatheit und informationeller Selbstbestimmung bearbeitet (z. B. Fragestellungen zur Nutzerakzeptanz und zum individuellen Datenschutzverhalten sowie zum Wert von Privacy-Mechanismen). Die Umsetzung von Rechten rund um Privatheit und Datenschutz macht die Entwicklung neuer, erweiterter Anonymisierungs- und Pseudonymisierungsans?tze notwendig. Unter anderem dafür werden an der FIDS moderne, kryptographische Verfahren wie Post-Quantum-Kryptographie und deren Anwendung erforscht.
Im Bereich Explainable AI (XAI) kombinieren alle Departments der FIDS verschiedene fachliche Schwerpunkte und komplement?re Methodenans?tze, um Fragestellungen aus theoretischer und angewandter Perspektive zu untersuchen.
Im Rahmen der theoretischen Perspektive werden mathematische, symbolische, statistische und informatische Grundlagen sowie neue Methoden erforscht, die es erm?glichen sollen, die Funktionsweise von künstlicher Intelligenz zu erkl?ren und statistische Daten zu interpretieren. bwin娱乐_bwin娱乐官网欢迎您@ umfasst beispielsweise symbolische Methoden, die formale Begründungen/Interpretationen zu Ausgaben von AI-Systemen erm?glichen. Weiterhin erm?glicht das Gebiet der Differential Privacy, Methoden der AI einzusetzen, w?hrend die Privatsph?re von Nutzerinnen und Nutzern gewahrt wird.
Aufbauend auf diesen theoretischen Grundlagen werden Ans?tze des Explainable AI in verschiedenen Anwendungsbereichen entwickelt, untersucht und evaluiert (z. B. in der Immunologie, der Onkologie, der Bildverarbeitung oder der betrieblichen Wertsch?pfung). Hierfür wird auch die Interaktion zwischen Menschen und KI-Systemen für ein besseres Verst?ndnis der Wahrnehmung, Akzeptanz und Verhaltensbeeinflussung von Explainable AI erforscht. Insgesamt leistet die Fakult?t so einen wichtigen Beitrag zur Erforschung zentraler Güteeigenschaften von maschinellen Lernverfahren, die für den verantwortungsbewussten Einsatz künstlicher Intelligenz essenzielle Voraussetzung sind.
Im Schwerpunkt “Computational Methods in the Natural Sciences" werden neue rechnergestützte Herangehensweisen für Anwendungen in Bereichen der Biologie, Medizin, Physik und Chemie entwickelt. Eine enge Zusammenarbeit mit Forschenden aus den naturwissenschaftlichen und medizinischen Fakult?ten steht dabei im Vordergrund.
Gro?e Teile der heutigen naturwissenschaftlichen und medizinischen Forschung stützen sich entscheidend auf Informatik-Methoden, z. B. auf Methoden des Data Engineerings, des maschinellen Lernens und des High Performance Computings. In allen Feldern kommt der Analyse, Visualisierung und Integration gro?er Datenmengen eine zentrale Bedeutung zu. Moderne Messmethoden wie Hochdurchsatz-Sequenzierung, Massenspektrometrie oder hochaufl?sende Mikroskopie sowie Screeningverfahren oder populationsweite Studien erzeugen gro?e, komplexe und heterogene Datens?tze. Die Methoden, die an der FIDS entwickelt werden, umfassen statistische und maschinelle Lernverfahren, mit denen quantitative Informationen aus den oft indirekten und unstrukturierten rohen Daten gewonnen werden, mit denen verschiedene Datenquellen verknüpft werden und statistische Zusammenh?nge aufgedeckt werden. Ein besonderer Fokus liegt dabei auch auf zu sch?tzenden Unsicherheiten durch Messungenauigkeiten sowie systematische Fehler und fehlende Werte. In vielen Gebieten der Naturwissenschaften wird das Verst?ndnis naturwissenschaftlicher Prozesse durch komplexe Modelle repr?sentiert, aus denen Vorhersagen nur durch Computersimulationen abgeleitet werden k?nnen. Das betrifft die Beschreibung fundamentaler Wechselwirkungen zwischen quantenmechanischen Teilchen genauso wie die Modellierung von genetischen Interaktionen mit Anwendungen in der Krebsforschung. An der FIDS werden neue Simulationsalgorithmen entwickelt, insbesondere solche, die die Techniken des maschinellen Lernens einbinden, um die Probleme l?sbar zu machen. Weiterhin bringt die Forschung an allgemeiner Künstlicher Intelligenz g?nzlich neue Optimierungsmethoden hervor, um automatisierte Verfahren zu entwickeln. Als Teil des Forschungsschwerpunktes werden Techniken des Reinforcement Learnings verwendet, die in den Naturwissenschaften Anwendung in der Steuerung von Experimenten mit Feedback finden oder auch im Design experimenteller Aufbauten.
Menschen nutzen Informationen bzw. Informationssysteme, um in analogen und/oder digitalen Kontexten Aufgaben zu l?sen. bwin娱乐_bwin娱乐官网欢迎您@ wirft vielf?ltige Fragestellungen auf:
bwin娱乐_bwin娱乐官网欢迎您@e Fragen sind leitend für den Forschungsschwerpunkt “Human-Centered AI” an der FIDS. Antworten auf diese Fragen k?nnen helfen, besser zu verstehen, wie, wann und warum Menschen aus einer Menge von Handlungsoptionen eine bestimmte Handlung ausw?hlen. Daraus ergibt sich, dass “Human-Centered AI” komplement?r zu KI-Schwerpunkten im Bereich autonomer Systeme immer vom Paradigma “Human in the Loop” getragen wird. Die FIDS leistet durch diesen Schwerpunkt direkt Beitr?ge zu den Schlüsselbereichen “Digital Transformations” und “Integrated Sciences in Life, Health, and Disease” der Universit?t Regensburg.
L?sungen, die in diesem Forschungsschwerpunkt erarbeitet werden, sind stets interdisziplin?rer Natur: Die Tatsache, dass Menschen als Nutzende von digitaler Technologie zentrales Untersuchungsobjekt sind, erfordert eine enge Zusammenarbeit mit der Psychologie. Andererseits haben Informationssysteme immer eine ausgepr?gte technische Komponente, die zur Beobachtung der Umgebung und der Nutzenden sowie zum interaktiven Handeln dienen kann. Dazu sind technische Expertise und Kompetenz in den Bereichen des Maschinellen Lernens und der Data Science notwendig, wie sie auch an der FIDS vorhanden sind. Die Anwendungsszenarien sind überaus vielf?ltig und stammen an der FIDS beispielsweise aus der Wirtschaftsinformatik (z. B. Internet der Dinge, soziotechnische Prozesse, Mensch-Roboter-Interaktion), den Life Sciences (z. B. Pr?vention in der Medizin, Beratungssysteme für Patient:innen, medizinische Entscheidungsunterstützungssysteme, Recommender Systeme) und der Informationswissenschaft im engeren Sinn (z. B. Fake News Detection, Informationsverhalten in den Sozialen Medien, Glaubwürdigkeit von Informationsangeboten im Internet, Einfluss von Information auf Einstellungen von Menschen, smart environments). Ein wesentlicher Aspekt des Forschungsschwerpunkts?“Human-Centered AI” sind an der FIDS schlie?lich ethische und juristische Voraussetzungen und Konsequenzen von KI-Verfahren in Informationsprozessen.