Zu Hauptinhalt springen

Mitteilungen der Universit?t Regensburg

Eine Funkverbindung mit Atomen

Physikerinnen und Physiker der Universit?t Regensburg erreichen erstmals atomare Aufl?sung mit optischer Mikroskopie, indem sie das Licht eines Quantenfunkens schneller als eine Billionstel Sekunde messen


8. Mai 2024

In den 1880er Jahren entdeckte Heinrich Hertz, dass ein Funke, der zwischen zwei Metallkugeln überspringt, einen Lichtblitz aussendet – also schnell schwingende elektromagnetische Wellen. bwin娱乐_bwin娱乐官网欢迎您@e k?nnen anschlie?end von einer Antenne empfangen werden. In Anerkennung dieser bahnbrechenden Arbeit wurde die Einheit der Frequenz 1930 nach Hertz benannt. Guglielmo Marconi (Nobelpreis für Physik, 1909) nutzte sp?ter Hertz‘ Entdeckungen, um Informationen über gro?e Entfernungen zu übertragen. bwin娱乐_bwin娱乐官网欢迎您@ führte zur Entstehung der Funkkommunikation und revolutionierte die drahtlose Telegrafie, die bis heute die moderne Welt pr?gt.

Wissenschaftler und Wissenschaftlerinnen an der Fakult?t für Physik und am Regensburg Center for Ultrafast Nanoscopy (RUN) der Universit?t Regensburg haben nun erfolgreich eine Quantenversion des Hertzschen Funkens beobachtet, der zwischen nur zwei Atomen springt. Sie schafften es, das Oszillogramm des von ihm ausgesandten Lichts mit einer zeitlichen Pr?zision zu messen, die schneller ist als ein einzelner Schwingungszyklus der Lichtwelle. bwin娱乐_bwin娱乐官网欢迎您@es Signal k?nnte nicht nur als neuartiger Kommunikationskanal mit der Quantenwelt für die Entwicklung superschneller Quantentechnologien von entscheidender Bedeutung sein. Damit l?sst sich zudem ein lange gehegter Traum realisieren: atomare Ortsaufl?sung mit optischer Mikroskopie. Der Quantenfunken er?ffnet damit Einblicke in Vorg?nge, die auf L?ngenskalen einzelner Atome und auf Zeitskalen von weniger als einer Billionstel Sekunde ablaufen.

Das Forschungsteam fokussierte dazu Licht in den winzigen Spalt zwischen einer atomar scharfen Spitze und einer Probenoberfl?che, den so genannten Nahfeldbereich. Dabei wurde der Spalt jedoch mit subatomarer Pr?zision nur wenige Atome gro? gehalten. In der klassischen Physik, in der man sich Elektronen als winzige geladene Teilchen vorstellt, k?nnen Elektronen diesen Spalt nicht überqueren. Der atomar kleine Abstand zwischen Spitze und Probe offenbart jedoch die quantenmechanische Natur der Teilchen: ihr wellenartiges Verhalten. Der gr??te Teil der Elektronenwelle befindet sich in der Spitze, ein kleiner Teil findet sich allerdings auch auf der anderen Seite des Spalts in der Probe, so als würde eine Person gleichzeitig auf beiden Seiten einer Tür stehen. bwin娱乐_bwin娱乐官网欢迎您@er kontraintuitive, quantenmechanische Welle-Teilchen-Dualismus manifestiert sich in einem experimentell messbaren Strom von Elektronen, die durch den winzigen Spalt ?tunneln“. Nun wird dieser Prozess mit Hilfe von Lichtwellen, den schnellsten kontrollierbaren elektrischen Wechselfeldern, auf extrem kurzen Zeitskalen getrieben. Das oszillierende elektrische Feld des Lichts bewegt die tunnelnden Elektronen zwischen dem vordersten Atom der Spitze und der Probe hin und her und erzeugt so die Quantenversion des Hertzschen Funkens. ?Die Hertzsche Emission von einer Handvoll Elektronen pro Schwingungszyklus des Lichts nachzuweisen, klang zun?chst wie Mission Impossible“, sagt der Erstautor Dr. Tom Siday. ?Stellen Sie sich unsere ?berraschung vor, als wir trotzdem ein deutlich messbares Signal entdeckten – alles dank der extrem stabilen Spitze, die als Antenne fungiert und diese Welle von der atomaren Skala übertr?gt.“ Die Autoren und Autorinnen nannten diese neue Technik ?Nahfeld-optische Tunnelemissionsmikroskopie“ (englisch: ?Near-Field Optical Tunnelling Emission“, NOTE). ?Dank dieser Entdeckung kann man Materiewellen auf atomaren L?ngenskalen in Zeitlupe flie?en sehen. Die Ergebnisse wurden in der renommierten Fachzeitschrift Nature ver?ffentlicht.

M?glich wurde dieser Durchbruch dank eines einzigartigen ultraschnellen optischen Mikroskops, das die Ortsaufl?sung eines hochmodernen Rastersondenmikroskops mit einer rein-optischen Signalmessung – ?Licht rein, Licht raus“ – kombiniert. ?Elektronik ist ph?nomenal empfindlich, aber zu langsam, um die Schwingungen des Stroms im lichtwellengetriebenen Quantenfunken direkt zu verfolgen. Deshalb muss man die Schwingungen des emittierten Lichts direkt beobachten“, erkl?rt Seniorautor Prof. Dr. Rupert Huber. ?Die Geburtsstunde von NOTE schlug, als wir zeigen konnten, dass die ein- und auslaufenden Lichtwellen um ein Viertel der Oszillationsperiode zeitlich verschoben waren – in unserem Experiment nur ein Viertel einer Billionstel Sekunde! Wir mussten sicherstellen, dass unser gesamter optischer Aufbau stabil genug ist, um solch winzige Ver?nderungen messen zu k?nnen und, dass wir absolute Kontrolle über das oszillierende Lichtfeld haben“, f?hrt einer der Erstautoren, Johannes Hayes, fort. ?Die Antennenspitze muss immer auf demselben Atom bleiben, selbst inmitten des intensiven Fokus starker Lichtimpulse – und das in einem Abstand von weniger als einem Zehntausendstel des Durchmessers eines menschlichen Haares. Nur die stabilsten experimentellen Bedingungen sind gerade gut genug“, fasst ein weiterer Erstautor, Felix Schiegl, zusammen.

Die Entschlüsselung des NOTE-Signals ist nach wie vor eine Herausforderung. Es reicht nicht, nur die beiden Atome zu betrachten, zwischen denen der Quantenfunke überspringt, da die Dynamik stark von der Umgebung beeinflusst wird. Dr. Jan Wilhelm nutzte einen Supercomputer, um die Quantenantwort von 1010 Atomen zu simulieren. Er konnte die charakteristische Zeitverschiebung des NOTE-Signals reproduzieren und erste Einblicke in den lichtwellengetriebenen Quantenfluss von Elektronen und die Verzerrung von Atomorbitalen gewinnen.

NOTE erm?glichte bereits jetzt v?llig neue Einblicke in die Quantenbewegung von Elektronen. ?Elektronen, die von der Spitze zur Probe wandern und dann wieder zurückkehren, sind für elektronische Messungen v?llig unsichtbar, nicht aber für NOTE“, erkl?rt Koautor Dr. Yaroslav Gerasimenko. ?Die Elektronen müssen nur in der unmittelbaren N?he der Spitze bleiben, bis das elektrische Feld des Lichts seine Richtung ?ndert, um zurückkehren zu k?nnen.“ Durch die Untersuchung eines atomar dünnen Isolators – eines Materials, das keinen Strom leitet – erhielten die Forschenden einen ersten Einblick in diese ultraschnellen Materiestr?me. Damit kann bislang unsichtbare Dynamik auf atomarer Ebene und in isolierenden Schichten, die in der Elektronik und Photovoltaik allgegenw?rtig sind, erstmals untersucht werden.

Ebenso wie die revolution?ren Entdeckungen von Heinrich Hertz vor über einem Jahrhundert, er?ffnet NOTE einen neuen Kommunikationskanal, nur dieses Mal per Funk zum Nanokosmos. Dadurch erreicht optische Mikroskopie erstmals atomare Orts- und Subzyklen-Zeitaufl?sung – mit v?llig neuen M?glichkeiten für die Grundlagenforschung: Ultraschnelle Tunnelstr?me beobachten zu k?nnen, ist erst der Anfang. Als n?chstes wollen sich die Regensburger Forscherinnen und Forscher ansehen, wie extrem starke elektromagnetische Felder mit einzelnen Atomen und Molekülen interagieren. Die neu zug?ngliche Elementardynamik von Elektronen in Quantenmaterialien dürfte überdies entscheidend für die Datenverarbeitung und Datenspeicherung von morgen werden.


Publikation:
Thomas Siday, Johannes Hayes, Felix Schiegl, Fabian Sandner, Peter Menden, Valentin Bergbauer, Martin Zizlsperger, Svenja Nerreter, Sonja Lingl, Jascha Repp, Jan Wilhelm, Markus Huber, Yaroslav Gerasimenko & Rupert Huber, All-optical subcycle microscopy on atomic length scales.?
In: Nature. DOI: https://doi.org/10.1038/s41586-024-07355-7

Research Briefing:?
https://doi.org/10.1038/d41586-024-01294-z


Zwischen dem vordersten Atom einer scharfen Spitze und einer Probe flie?t ein ultraschneller Tunnelstrom als Reaktion auf ein einfallendes elektromagnetisches Feld. bwin娱乐_bwin娱乐官网欢迎您@er atomar begrenzte Strom führt zur Emission von Licht, das Informationen über die inneren Abl?ufe quantenmechanischer Prozesse enth?lt. ? Brad Baxley


Informationen/Kontakt

Prof. Dr. Rupert Huber
Fakult?t für Physik
Universit?t Regensburg
Tel.: +49 (0)941 943 2070
E-Mail: Rupert.Huber@ur.de
?

Kommunikation & Marketing

 

Anschnitt Sommer Ar- 35_