ESAIM: Control, Optimisation and Calculus of Variations,?2023, vol. 29, nr. 68.?https://doi.org/10.1051/cocv/2023047?preprint:?https://arxiv.org/abs/2104.05496
S. Bartels,?A. Bonito,?P. Tscherner:?Error Estimates For A Linear Folding Model.?preprint:?https://arxiv.org/abs/2205.05720
A. Rüland,A. Tribuzio:?On Scaling Laws for Multi-Well Nucleation Problems without Gauge Invariances.?Journal of Nonlinear Science,?2023, vol. 33, nr. 25.?https://doi.org/10.1007/s00332-022-09879-6?preprint:?https://arxiv.org/abs/2206.05164
M. Santilli,?B. Schmidt:?A Blake-Zisserman-Kirchhoff theory for plates with soft inclusions.?preprint:?https://arxiv.org/abs/2205.04512
B. Schmidt, J. Zeman:?A bending-torsion theory for thin and ultrathin rods as a?Γ-limit of atomistic models.?preprint:?https://arxiv.org/abs/2208.04199
B. Schmidt, J. Zeman:?A continuum model for brittle nanowires derived from an atomistic description by?Γ-convergence.?preprint:?https://arxiv.org/abs/2208.04195
M. K?hler, T. Neumeier,?J. Melchior, M. A. Peter, D. Peterseim,?D. Balzani:?Adaptive convexification of microsphere-based incremental damage for stress and strain softening at finite strains.?Acta Mechanica, 2022, 233. Jg., Nr. 11, S. 4347-4364?https://doi.org/10.1007/s00707-022-03332-1
A. Brunk,?H. Egger, O. Habrich,?and M. Lukacovy-Medvidova:?A structure-preserving variational discretization scheme for the Cahn-Hilliard Navier-Stokes system.?preprint:?https://doi.org/10.48550/arXiv.2209.03849
A. Brunk,?H. Egger,?and?O. Habrich:?On uniqueness and stable estimation of multiple parameters in the Cahn-Hilliard equation.?preprint:?https://arxiv.org/abs/2208.10201
A. Brunk,?H. Egger, O. Habrich,?and M. Lukacova-Medvidova:?Relative energy estimates for the Cahn-Hilliard equation with concentration dependent mobility.?Preprint:?https://doi.org/10.48550/arXiv.2102.05704
. Yang, M. Fathidoost, T. D. Oyedeji, P. Bondi, X. Zhou, H.?Egger?and?B.-X. Xu:?A diffuse-interface model of anisotropic interface thermal conductivity and its application in thermal homogenization of composites.?Scripta Materialia, 2022, 212. Jg., S. 114537.?https://doi.org/10.1016/j.scriptamat.2022.114537?preprint:?https://www.researchgate.net/profile/Yangyiwei-Yang-2/publication/358106050
H. Egger, O. Habrich,?and?V. Shashkov:?Energy stable Galerkin approximation of Hamiltonian and gradient systems.?Comput. Meth. Appl. Math. 21 (2021),?https://arxiv.org/pdf/1812.04253
P. Dondl, S. Conti,?and?J. Orlik:?Variational modeling of paperboard delamination under bending.?Math. in Eng. 6 (2023), 1–28. preprint: arXiv:2110.08672?doi: 10.3934/mine.2023039.
S. Conti, F. Hoffmann, and?M. Ortiz:?Model-free data-driven inference.?preprint:?arXiv:2106.02728 (2021)
S. Conti,?R. V. Kohn, and O. Misiats:?Energy minimizing twinning with variable volume fraction, for two nonlinear elastic phases with a single rank-one connection.?Mathematical Models and Methods in Applied Sciences, 2022, 32. Jg., Nr. 08, S. 1671-1723.?https://dx.doi.org/10.1142/S0218202522500397?preprint:?https://www.math.nyu.edu/~kohn/papers/ContiKohnMisiats-M3AS.pdf
S. Conti,?M. Focardi, and F. Iurlano:?Phase-field approximation of a vectorial, geometrically nonlinear cohesive fracture energy.?preprint:?arXiv:2205.06541(2022)?
Vaios Laschos,?Alexander Mielke:?Evolutionary Variational Inequalities on the Hellinger-Kantorovich and the spherical Hellinger-Kantorovich spaces.?preprint:?https://arxiv.org/pdf/2207.09815
Alexander Mielke, Thomas Roubicek:?Qualitative study of a geodynamical rate-and-state model for elastoplastic shear flows in crustal faults.?WIAS, preprint?arXiv: 2207.1107
Alexander Mielke, Ricarda Rossi:?Balanced-viscosity solutions to infinite-dimensional multi-rate systems.?WIAS,?preprint:?arXiv:?2112.01794?
J. Potthoff,?B. Wirth:?Optimal fine-scale structures in compliance minimization for a uniaxial load in three space dimensions.?ESAIM: Control, Optimisation and Calculus of Variations 28:27, 2022?preprint:?https://arxiv.org/abs/2111.06910?
X. Zhou, Y. Yang, S. Bharech, B. Lin,?J. Schr?der, B.-X. Xu:?3D‐multilayer simulation of microstructure and mechanical properties of porous materials by selective sintering.?GAMM‐Mitteilungen, 2021, 44. Jg., Nr. 4, S. e202100017.?https://doi.org/10.1002/gamm.202100017?
T. D. Oyedeji, Y. Yang,?H. Egger, B.-X. Xu:?Variational quantitative phase-field modeling of non-isothermal sintering process.?preprint:?https://arxiv.org/abs/2209.14913
D.?Knees,?V.?Shcherbakov:?A penalized version of the local minimization scheme for rate-independent systems.?Applied Mathematics Letters, 2021, 115. Jg., S. 106954.?https://doi.org/10.1016/j.aml.2020.106954?preprint:?https://www.researchgate.net/profile/Viktor-Shcherbakov/publication/347648611
D.?Knees,?S. Owczarek,?P. Neff:?A local regularity result for the relaxed micromorphic model based on inner variations.?Journal of Mathematical Analysis and Applications, 2023, 519. Jg., Nr. 2, S. 126806.?https://doi.org/10.1016/j.jmaa.2022.126806?preprint:?https://arxiv.org/pdf/2208.04821?
A. Rüland:?Rigidity and Flexibility in the Modelling of Shape-Memory Alloys.?Research in Mathematics of Materials Science, 2022, S. 501-515.?https://doi.org/10.1007/978-3-031-04496-0_21
A. Rüland, T.M. Simon:?On Rigidity for the Four-Well Problem Arising in the Cubic-to-Trigonal Phase Transformation.? preprint:?https://arxiv.org/abs/2210.04304
F. Ernesti, J. Lendvai, M. Schneider:?Investigations on the influence of the boundary conditions when computing the effective crack energy of random heterogeneous materials using fast marching methods.?Computational Mechanics, 2022, S. 1-17.?https://doi.org/10.1007/s00466-022-02241-3
V. Hüsken:?On prescribing the number of singular points in a Cosserat-elastic solid.?ArXiv preprint.?http://arxiv.org/abs/2211.11517?
S. Boddin, F. R?rentrop, D. Knees, J. Mosler:?Approximation of balanced viscosity solutions of a rate-independent damage model by combining alternate minimization with a local minimization algorithm.?preprint:?https://arxiv.org/abs/2211.12940
B. Kiefer, S. Prüger, O. Rheinbach,?and?F. R?ver:?Monolithic Parallel Overlapping Schwarz Methods in Fully-Coupled Nonlinear Chemo-Mechanics Problems.?In:?Comput Mech?71, 765–788 (2023).?https://doi.org/10.1007/s00466-022-02254-y?Preprint:?https://arxiv.org/abs/2212.00801
A. Heinlein,?O. Rheinbach,?and?F. R?ver:?Parallel Scalability of Three-Level FROSch Preconditioners to 220000 Cores using the Theta Supercomputer.?SIAM Journal on Scientific Computing, 2022, Nr. 0, S. S173-S198.?https://doi.org/10.1137/21M1431205?preprint:?https://tu-freiberg.de/sites/default/files/media/fakultaet-fuer-mathematik-und-informatik-fakultaet-1-9277/prep/2021-03.pdf
B. Kiefer, O. Rheinbach, S. Roth,?and?F. R?ver:?Variational Methods and Parallel Solvers in Chemo-Mechanics.?PAMM, 2021, 20. Jg., Nr. 1, S. e202000272.?https://doi.org/10.1002/pamm.202000272?preprint:?https://www.researchgate.net/profile/Bjoern-Kiefer/publication/348775402
B. Kiefer, S. Prüger, O. Rheinbach, F. R?ver,?and?S. Roth:?Variational Settings and Domain Decomposition Based Solution Schemes for a Coupled Deformation-Diffusion Problem.?PAMM, 2021, 21. Jg., Nr. 1, S. e202100163.?https://doi.org/10.1002/pamm.202100163??preprint:?https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202100163
A. Heinlein, A. Klawonn,?O. Rheinbach,?and?F. R?ver:?A Three-Level Extension for Fast and Robust Overlapping Schwarz (FROSch) Preconditioners with Reduced Dimensional Coarse Space.?Domain Decomposition Methods in Science and Engineering XXVI. Lecture Notes in Computational Science and Engineering, vol 145. Springer, Cham. 2023?https://doi.org/10.1007/978-3-030-95025-5_54?preprint:?https://www.researchgate.net/profile/Oliver-Rheinbach/publication/351056801?
A. Heinlein,?O. Rheinbach, and?F. R?ver:?Choosing the Subregions inThree-Level FROSch Preconditioners.??in: WCCM-ECCOMAS,?2021.?https://doi.org/10.23967/wccm-eccomas.2020.084
M. K?hler, D. Balzani:?Evolving Microstructures in Relaxed Continuum Damage Mechanics for Strain Softening.?https://doi.org/10.1016/j.jmps.2023.105199?preprint:
https://arxiv.org/abs/2208.14695
D. Balzani, M. K?hler, T. Neumeier, M. A. Peter, D. Peterseim:?Multidimensional rank-one convexification of incremental damage models at finite strains.?preprint:?https://arxiv.org/abs/2211.14318
A. Gastel, P. Neff:?Regularity for a geometrically nonlinear flat Cosserat micropolar membrane shell with curvature.?preprint:?https://arxiv.org/abs/2211.10645
F. Behr, G. Dolzmann, K. Hackl, G. Jezdan:?Analytical And Numerical Relaxation Results For Models In Soil Mechanics.?Submitted to Cont. Mech. Thermodyn: ??https://arxiv.org/abs/2212.11783
M. Santilli,?B. Schmidt:?Two phase models for elastic membranes with soft inclusions.?preprint:?https://arxiv.org/abs/2106.01120
Friederike R?ver:?Multi-Level Extensions for the Fast and Robust Overlapping Schwarz Preconditioners.?Dissertationsschrift
M. Sarhil, L. Scheunemann, P. Neff, J. Schr?der:?On a tangential-conforming finite element formulation for the relaxed micromorphic model in 2D.??https://doi.org/10.1002/pamm.202100187
J. Schr?der, M. Sarhil, L. Scheunemann, P. Neff:?Lagrange and H(curl,β) based Finite Element formulations for the relaxed micromorphic model.https://doi.org/10.1007/s00466-022-02198-3
M. Sarhil, L. Scheunemann, J. Schr?der, P. Neff:?Size-effects of metamaterial beams subjected to pure bending: on boundary conditions and parameter identification in the relaxed micromorphic model.?preprint:?https://arxiv.org/abs/2210.17117
M. Sarhil, L. Scheunemann, P. Neff, J. Schr?der:?Modeling the size-effect of metamaterial beams under bending via the relaxed micromorphic continuum.
A. Sky, M. Neunteufel, I. Münch, J. Sch?berl,?P. Neff:?A hybrid?H1?× H(curl)?finite element formulation for a relaxed micromorphic continuum model of antiplane shear.https://doi.org/10.1007/s00466-021-02002-8
A. Sky and M. Neunteufel and I. Muench and J. Sch?berl and?P. Neff:?Primal and mixed finite element formulations for the relaxed micromorphic model.?https://doi.org/10.1016/j.cma.2022.115298
B Rai??,?A Rüland,?C Tissot,?A Tribuzio:?On Scaling Properties for a Class of Two-Well Problems for Higher Order Homogeneous Linear Differential Operators.?preprint:?https://arxiv.org/pdf/2306.14660.pdf
A Rüland, A Tribuzio:?On the Scaling of the Cubic-to-Tetragonal Phase Transformation with Displacement Boundary Conditions.?preprint:?https://arxiv.org/pdf/2306.05740.pdf
S?ren Bartels,?Philipp Tscherner:?Necessary and Sufficient Conditions for Avoiding Babuska's Paradox on Simplicial Meshes.?Calculus of Variations and Partial Differential Equations, 2021, 60. Jg., Nr. 4, S. 1-46.?https://arxiv.org/abs/2401.05897
Antonio Tribuzio,?Konstantinos Zemas:?
Energy barriers for boundary nucleation in a two-well model without gauge invariances.?arXiv preprint (nr. 2403.04567)?https://doi.org/10.48550/arXiv.2403.04567
Janusz Ginster,?Angkana Rüland,?Antonio Tribuzio,?Barbara Zwicknagl:?On the Effect of Geometry on Scaling Laws for a Class of Martensitic Phase Transformations.?ArXiv preprint?https://arxiv.org/abs/2405.05927?