Computational Nanoscience: Exercise Sheet No. 8

For this exercise sheet, the theoretical background from Chapter 14: 'GW approximation for quasiparticle energies' is needed. Chapter 13 is neither needed for this exercise sheet nor for the following exercise sheets. Thus, Chapter 13 has been shifted to the last week of the lecture period, see Youtube playlist.

Exercise 8.1: $G_0 W_0$ @PBE for ethylene

(a) Generate the geometry file for ethylene from the experimental data available at http://cccbdb. nist.gov/ according to the following steps: on the home page of the CCCBDB database select "Experimental" from the top menu. Follow the link for "Geometry/Experimental Geometries" and provide the molecule name to access the geometry information. Copy the geometry specification to the geometry.in file and modify them to comply with the FHI-aims format. As in the previous exercise, the geometry data should be specified in the following format:

atom <X> <Y> <Z> <Element>
atom <X> <Y> <Z> <Element>
...

Start a new control.in file and set up a spin-unpolarized DFT calculation with zero charge using the PBE functional (flag: xc pbe). Include

qpe_calc gw
anacon_type 1

into control.in to activate the G_0W_0 calculation.

Copy the required tight parameters for hydrogen and carbon from

```
phy318:/loctmp/comp\_nanoscience/species\_defaults/tight
```

and paste them both into your input file. Helpful command for this:

cat file1 >> file2

appends the whole content of file1 to file2. In the species settings at the end of the control.in file modify the following flags (for all elements!):

cut_pot 6.0 2.0 1.0 basis_dep_cutoff 0

Start a parallel calculation using four cores by typing:

mpirun -np 4 ~/.aims.x | tee aims.out

A table should appear that looks as follows:

GW quasi-particle energy levels

 state 	occ_num	e_gs	e_x^ex	e_xc^gs	e_c^nloc	e_qp
 1	2.0000	-269.0433	-96.9218	-61.5502	9.3514	-295.0635
2	2.0000	-269.0254	-96.9038	-61.5630	9.5102	-294.8560
3	2.0000	-18.7700	-25.6748	-16.7054	5.2793	-22.4601
4	2.0000	-14.2376	-22.3517	-15.3175	2.8906	-18.3812
5	2.0000	-11.5044	-20.1181	-14.3506	2.4518	-14.8201
6	2.0000	-10.1331	-21.1155	-15.7514	1.3993	-14.0979
7	2.0000	-8.5753	-19.2886	-14.3513	0.8708	-12.6418
8	2.0000					
9	0.0000	-1.0832	-6.4109	-11.7862	-2.2189	2.0732
10	0.0000	-0.1425	-1.0294	-3.0842	-0.5411	1.3712
11	0.0000	0.3582	-0.7849	-2.5482	-0.4608	1.6607
12	0.0000	0.4107	-0.8921	-2.7332	-0.4551	1.7966
13	0.0000	1.5596	-0.4871	-1.7665	-0.2746	2.5644
14	0.0000	2.7977	-2.0978	-5.3951	-1.0745	5.0206
15	0.0000	3.3989	-1.7048	-5.0530	-1.1114	5.6357
16	0.0000	3.5916	-3.1691	-6.9927	-1.4249	5.9903
17	0.0000	4.0348	-2.5427	-6.0026	-1.4087	6.0861
18	0.0000	4.2280	-1.8715	-5.3839	-1.1913	6.5491

e_qp = e_gs + e_x^ex - e_xc^gs + e_c^nloc

Report the missing line in your solution.

(b) For upper table, FHI-aims computes the G_0W_0 self-energy as

$$\Sigma^{G_0 W_0}(\varepsilon) = \Sigma^{\rm HF} + \Sigma^{\rm c}(\varepsilon) \tag{1}$$

where Σ^{HF} is the Hartree-Fock self-energy (also called exact exchange self-energy) and $\Sigma^{c}(\varepsilon)$ the 'correlation self-energy' that includes all *GW* effects beyond the Hartree-Fock self-energy (the main screening effect is nonlocal since screening acts on two electrons that are on different spatial positions). Interpret upper table: Define and relate every quantity to definitions from the lecture notes. Write the equation on 'GW quasi-particle energy levels' in the notation of the lecture notes/Eq. (1).

Exercise 8.2: G_0W_0 basis set convergence

(a) Report the convergence of the G_0W_0 @PBE quasi-particle energy for the G_0W_0 @PBE HOMO for ethylene using the Tier 1, Tier 1+2, and Tier 1+2+3 basis sets (by adding/removing the comment in the respective lines in the input file). Calculations with the Tier 1+2+3 basis set will require the following additional settings in the control.in file to overcome ill-conditioning of the overlap matrix between basis functions due to the large basis set:

basis_threshold 1.e-4
override_illconditioning .true.

How does the convergence of the ionization energy in G_0W_0 @PBE compare to that of the PBE eigenvalue? Background info: There are methods to extrapolate *GW* calculations to the complete

basis set limit; still it is difficult to extrapolate GW for small molecules to the complete basis set limit.

(b) Have a look at the formula for computing the polarizability *P*. How is an increased basis set size reflected in the computation of the polarizability? Can you explain the origin of the qualitative differences between the convergence behavior in PBE and G_0W_0 @PBE?

Exercise 8.3: G_0W_0 starting point dependence

The purpose of this exercise is to illustrate the dependence of G_0W_0 calculations on the starting point.

- (a) Following the steps given in the previous exercises, perform a G_0W_0 calculation on ethylene using the Hartree-Fock and the PBE0 starting point (i.e. set xc hf and xc pbe0, respectively, in the control.in file), and compare to G_0W_0 @PBE.
- (b) Are your conclusions from (a) also valid in the complete basis set limit? Discuss.
- (c) What is the most important origin of the strong starting point dependence of G_0W_0 ? Trace the origin back in the G_0W_0 formulas.
- (d) How can one reduce the starting point dependence of a GW calculation?