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Preview of the four lectures 2

The first three lectures share a common theme: Understanding the behaviour of
parabolic or elliptic equations by applying the maximum principle to ‘non-local’
functions (that is, functions involving several points or the global properties of the
solution in some way).

I will explore this over the three talks in three quite different applications, related by
the similarity of the techniques used.

First lecture: Applying maximum principles to control the modulus of continuity
and related properties of solutions of the heat equation. The main application of these
ideas is to estimating eigenvalues of the Laplacian. Much of this describes joint work
with Julie Clutterbuck (Monash).



Lecture plan 3

Second lecture: Applying maximum principles to estimate the isoperimetric profile
of an evolving geometric object (joint work with Paul Bryan, now at Warwick). This
produces surprisingly strong results with very little effort, and gives easy proofs of
two of the more famous results in the area:

• Grayson’s theorem on shrinking embedded closed curves to ‘round points’ under
curve shortening flow; and

• Hamilton and Chow’s results about deforming metrics on surfaces to constant
curvature under Ricci flow.

Third lecture: Applying some related ideas to the mean curvature flow in higher
dimensions. This gives a ‘non-collapsing’ estimate for hypersurfaces moving by
mean curvature, which is the basis for a powerful new regularity theory for
mean-convex hypersurfaces moving by mean curvature flow, and when adapted to the
elliptic setting (as was done by Brendle) yields a proof of the Lawson conjecture on
minimal surfaces in the 3-sphere.

Fourth lecture: This will depart from the theme of the other talks, and consider the
evolution of hypersurfaces by Gauss curvature. I will discuss some recent progress
on this old problem, which mostly uses variational arguments.



Today’s talk outline 4

• Controlling modulus of continuity for solutions of the classical heat equation

• Eigenvalue inequality 1: The Payne-Weinberger inequality

•Modulus of continuity for heat equations on manifolds

• Eigenvalue inequality 2: Sharp lower bounds involving Ricci curvature and
diameter

• Sharp Log-concavity of the first Dirichlet eigenfunction

• and the fundamental gap conjecture



The 1D heat equation and Kruzhkov’s method

To motivate what we do later, I want to mention a nice observation due to Kruzhkov
in the 1960s, which is very useful in dealing with parabolic equations in one spatial
variable. Let u be a solution of the 1D heat equation ut = u′′. Then consider the
function

v(x,y, t) = u(y, t)−u(x, t).

Observe that v(x,x, t) = 0 for every x and t, and we have

vt(x,y, t) = u′′(y, t)−u′′(x, t) =
∂ 2v
∂y2 +

∂ 2v
∂x2 = ∆v.

So v solves the heat equation with zero Dirichlet boundary condition on
{(x,y, t) : y > x, t ≥ 0}.

If u is bounded, then so is v and we can use a simple barrier argument to prove a
boundary gradient estimate for v. Since Dv(x,x, t) = (u′(x, t),−u′(x, t)), the boundary
gradient for v implies a global gradient estimate for u.



Modulus of continuity under the heat equation 1: The 1D case 6

Consider a solution u(x, t) of the heat equation in one spatial variable. For simplicity
assume that u is spatially periodic, so that u(x+L, t) = u(x, t) for all x and t, for some
L > 0. We define the modulus of continuity to be

ω(s, t) = sup
{

u(y, t)−u(x, t)
2

∣∣∣ |y− x|
2

= s
}
.

Example: If u(x) = sin(x) then ω(s) = |sin(s)|.

Note ω is generally non-smooth.

More generally: If u is odd, L/2-antiperiodic, and concave on (0,L/2), then
ω(s) = |u(s)| for all s. Evolving such a function by the heat equation preserves all
these properties, so we then have ω(s, t) = |u(s, t)| for all s and t. In particular, the
modulus of continuity ω evolves by the heat equation (on the interval [0,L/2]).



Modulus of continuity as a subsolution 7

Claim: If u is any L-periodic solution of the heat equation, then ω is a viscosity
subsolution of the heat equation with Dirichlet boundary conditions on [0,L]× [0,∞).

Proof: We have to show the following: If ϕ is a smooth function defined on a
neighbourhood of (s0, t0) ∈ (0,L)× (0, t0] such that ϕ ≥ ω with equality at (s0, t0),
then (∂t−∂ 2

x )ϕ
∣∣
(s0,t0)

≤ 0.

We have ϕ(s, t)≥ ω(s, t)≥ u(y,t)−u(x,t)
2 for any x,y with y−x

2 = s, and equality holds
in the first inequality at (s0, t0). Also, there exist points x0 and y0 with y0−x0

2 = s0
such that equality holds in the second inequality. It follows that
Z(x,y, t) = u(y)−u(x)−2ϕ( y−x

2 ) is non-positive for t ≤ t0 and zero at (x0,y0, t0), so

0≤ ∂Z
∂ t

∣∣∣
(x0,y0,t0)

= u′′(y0, t0)−u′′(x0, t0)−2
∂ϕ

∂ t
(s0, t0),

while

0 = DZ
∣∣∣
(x0,y0,t0)

=

[
u′(y0, t0)−ϕ ′(s0, t0)
−u′(x0, t0)+ϕ ′(s0, t0)

]
,

and

0≥ D2Z
∣∣∣
(x0,y0,t0)

=

[
u′′(y0, t0)−

ϕ ′′(s0,t0)
2

ϕ ′′(s0,t0)
2

ϕ ′′(s0,t0)
2 −u′′(x0, t0)−

ϕ ′′(s0,t0)
2

]
.
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0≥ D2Z
∣∣∣
(x0,y0,t0)

=

[
u′′(y0, t0)−

ϕ ′′(s0,t0)
2

ϕ ′′(s0,t0)
2

ϕ ′′(s0,t0)
2 −u′′(x0, t0)−

ϕ ′′(s0,t0)
2

]
.

To make best use of the latter we compute

0≥ D2Z
∣∣∣
(x0,y0,t0)

((1,−1),(1,−1)) = u′′(y0, t0)−u′′(x0, t0)−2ϕ
′′(s0, t0).

Subtracting this from the time derivative inequality gives

0≤

(
∂

∂ t
−
(

∂

∂y
− ∂

∂x

)2
)

Z
∣∣∣
(x0,y0,t0)

= 2
(

ϕ
′′− ∂ϕ

∂ t

)∣∣∣
(s0,t0)

as required.
Remark: Why didn’t we compute

(
∂

∂ t −∆

)
Z? This only gives

u′′(y0, t0)−u′′(x0, t0)−ϕ ′′(s0, t0), and we would deduce only that ∂ϕ

∂ t ≤
1
2 ϕ ′′. Why

is the particular component of the second derivative we used the right choice?
The answer can be seen by considering the case where we know ω = u on (0,L).
Then taking ϕ = u, we have Z = 0 on the set {x+ y = 0}.

For equality to hold in the second derivative inequality we can allow only those parts
of the second derivative which vanish in this case, i.e. just the second derivative
along {Z = 0}, which is the (1,−1) direction.



The heat equation in higher dimensions 9

Now consider the heat equation in higher dimensions, and let us also deal with some
natural boundary conditions. For this argument the most natural boundary condition
is the Neumann condition, so we let Ω be a (smoothly) bounded convex domain in
Rn, take ν to be the outward unit normal, and consider solutions to the Neumann heat
equation {

∂u
∂ t = ∆u on Ω;
Dν u = 0 on ∂Ω.

We define the modulus of continuity by

ω(s, t) := sup
{

u(y, t)−u(x, t)
2

∣∣∣ x,y ∈Ω,
|y− x|

2
= s
}
.

This is defined on [0,D/2]× [0,∞), where D = diam(Ω) = sup{|y− x| : x,y ∈Ω}.
Note that we again have a particular situation where ω satisfies the heat equation:
Suppose Ω is a cylinder A× [−a/2,a/2] (where A is a convex subset of Rn−1) and
suppose u(x,y, t) is a function of y and t only: u(x,y, t) = f (y, t). Then u satisfies the
Neumann heat equation on Ω if and only if f satisfies the one-dimensional Neumann
heat equation on [−a/2,a/2]. In this case, provided f is odd, increasing, and concave
for y > 0, we have ω(s, t) = f (s, t) (for 0 < s < a) and so ω satisfies the
one-dimensional heat equation.



Modulus of continuity as a subsolution in higher dimensions 10

Claim: If u is any solution of the Neumann heat equation on Ω, then ω is a viscosity
subsolution of the heat equation on [0,D/2]× [0,∞) with ω(0, t) = 0 and
ω ′(D/2, t) = 0 (with respect to non-decreasing barriers).

Proof: We need to consider a non-decreasing smooth function ϕ touching ω from
above at (s0, t0). Exactly as before we have for all x,y ∈Ω and all t ∈ [0, t0] that

Z(x,y, t) := u(y, t)−u(x, t)−2ϕ

(
|y− x|

2
, t
)
≤ 2ω

(
|y− x|

2
, t
)
−2ϕ

(
|y− x|

2
, t
)
≤ 0,

with equality at (x0,y0, t0), where |y0−x0|
2 = s0 and x0 and y0 attain equality in the

definition of ω(s0, t0).
We first consider the possibility that y0 is in the boundary of Ω:

Then

0≤ DZ
∣∣∣
(x0,y0,t0)

(0,ν(y0))

= Dν u(y0)−ϕ
′ y0− x0

|y0− x0|
·ν(y0)

≤ 0,

so equality holds throughout.

The case where x0 is in the boundary of Ω is similar.
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It follows that whether or not x0 or y0 is in the boundary, we have

∂Z
∂ t

∣∣∣
(x0,y0,t0)

≥ 0;

and
D2Z

∣∣
(x0,y0,t0)

≤ 0.

The first gives

∆u(y0, t0)−∆u(x0, t0)−2
∂ϕ

∂ t
≥ 0.

We only compute the components of D2Z which produce zero in the symmetric case.
In this case equality holds when x = (z,−s) and y0 = (z,s) for some z ∈ A and
s ∈ [−a,a]. Thus the second derivatives of Z which vanish are those in the directions
ẋ = ẏ = (e,0) or ẋ = (0,−1), ẏ = (0,1). We choose an orthonormal basis where
en =

y0−x0
|y0−x0| , and compute the corresponding second derivatives:

d2

ds2 Z(x0 + sei,y0 + sei)
∣∣∣
s=0

= uii(y0, t0)−uii(x0, t0)≤ 0;

and
d2

ds2 Z(x0 + sen,y0− sen)
∣∣∣
s=0

= unn(y0, t0)−unn(x0, t0)−2ϕ
′′ ≤ 0.

Adding these gives ∆u(y0, t0)−∆u(x0, t0)−2ϕ ′′ ≤ 0, which combines with the time
inequality to give ϕt ≤ ϕ ′′, as required.



Exponential convergence and the Payne-Weinberger inequality

The result we just proved has a very nice consequence:

Theorem (The Payne-Weinberger inequality)

The first nontrivial eigenvalue λ1 of the Neumann Laplacian on a convex domain Ω

in Rn satisfies λ1 ≥ π2

D2 . Equality holds in the limit of examples of the form Ω = A× I
where the diameter of A approaches zero.

Proof. Let u1(x) be the corresponding eigenfunction. Then u(x, t) = e−λ1tu1(x) is a
solution of the Neumann heat equation on Ω. Let ω : [0,D/2]× [0,∞) be the
corresponding modulus of continuity. Then ω(s,0)≤ C sin

(
πs
D
)

for some large C,

since u1 is smooth. The previous result implies ω(s, t)≤ Ce−
π2

D2 t sin
(

πs
D
)

for all
s ∈ [0,D/2] and t ≥ 0. In particular this implies

osc(u1)e−λ1t = osc(u(., t))≤ Ce−
π2

D2 t. Taking t→ ∞ implies λ1 ≥ π2

D2 .



The heat equation on a Riemannian manifold

We can carry out the same argument for the heat equation ∂u
∂ t = ∆u on a compact

Riemannian manifold, by taking the following definition of the modulus of
continuity:

ω(s, t) := sup
{

u(y, t)−u(x, t)
2

:
d(x,y)

2
= s
}

where d(x,y) is the Riemannian distance from x to y defined by minimising lengths
of curves joining x and y. The result in this case is the following:

Proposition

Suppose (M,g) is a compact Riemannian manifold with diameter
D = sup{d(x,y) : x,y ∈M} and Ricci curvature bounded below: Rc≥ (n−1)Kg. If
u satisfies the heat equation on M, then ω satisfies

ωt(s, t)≤ ω
′′(s, t)+(n−1)TK(s)ω ′(s, t)

in the viscosity sense. Equality holds in the case that M is a warped product
M = Σn−1× [−D/2,D/2], with g = ds2 +CK(s)ḡ for some metric ḡ on Σ, and u is a
function of s and t only.

The proof uses inequalities on the Hessian of the distance function on M×M, given
by the Ricci curvature lower bound (similar to the Laplacian comparison theorem),
and is otherwise carried out by making choices of second variation inequalities for
which equality holds in the model case.



Eigenvalue inequality #2 14

An immediate consequence is the following sharp eigenvalue lower bound, which
was previously known using gradient estimates on eigenfunctions through work of Li
and Yau, Zhong and Yang, Kröger, and Bakry and Qian, and using probabilistic
arguments by Mu-Fa Chen and Fengyu Wang:

Proposition

The first nontrivial eigenvalue λ1 of the (Neumann) Laplacian on a compact manifold
Mn with diameter bounded by D, Ricci curvature bounded below by (n−1)Kg, and
boundary convex (if non-empty) satisfies

λ1 ≥ λ̄1(n,K,D)

where λ̄1(n,K,D) is the first eigenvalue of the one-dimensional heat equation

ft = f ′′+(n−1)TK f ′

with Neumann boundary conditions on [−D/2,D/2]. Equality holds in the limit of
warped product examples Σ× I as the diameter of Σ approaches zero.

Particular cases: λ̄1(n,0,D) = π2

D2 (Li-Yau, Zhong-Yang); λ̄ (n,1,π) = n
(Lichnerowicz).



The fundamental gap conjecture

Now I want to return to the Euclidean setting to discuss the corresponding problem
for the Dirichlet Laplacian, which is the ‘fundamental gap conjecture’ of van den
Berg, Yau and Ashbaugh-Benguria:

Theorem (A.-Clutterbuck)
Let Ω be a convex domain on diameter D in Rn, and V a convex function on Ω. Let
λ0 and λ1 be the first two eigenvalues of the corresponding Schrödinger operator
with Dirichlet boundary condition:{

∆ϕi +Vϕi +λiϕi = 0, on Ω;
ϕi = 0 on ∂Ω,

for i = 0,1, with ϕ0 > 0 on Ω. Then

λ1−λ0 ≥
3π2

D2 .

Equality holds in the limit of domains of the form A× I as the diameter of A
approaches zero, with zero potential.



Ratios of positive solutions to the Dirichlet heat equation

The first part of the proof is similar to what I showed you for the proof of the
Payne-Weinberger inequality, using the following nice observation: Suppose that u0
and u1 are two solutions of the corresponding heat equation:{

∂ui
∂ t = ∆ui +Vui on Ω× [0,∞);

ui = 0 on ∂Ω× [0,∞),

for i = 0,1, and assume that u0 > 0 on Ω× [0,∞). Then the ratio v = u1
u0

satisfies the
following Neumann heat equation with drift:{

∂v
∂ t = ∆v+2D logu0 ·Dv on Ω× [0,∞)

Dν v = 0 on ∂Ω× [0,∞).

The idea is now to control the modulus of continuity of v. When we do this, we need
to show that

Z(x,y, t) = v(y, t)− v(x, t)−2ϕ

(
|y− x|

2
, t
)

stays non-positive, provided ϕ is a solution of some suitable equation. The only
difference from before is in the time derivative, where we get an extra term:

∂Z
∂ t

= ∆u(y, t)−∆u(x, t)+2
(

D logu0 ·Dv
∣∣
(y0,t0)

−D logu0 ·Dv
∣∣
(x0,t0)

)
.



Ratios of solutions, continued 17

∂Z
∂ t

= ∆u(y0, t0)−∆u(x0, t0)+2
(

D logu0 ·Dv
∣∣
(y0,t0)

−D logu0 ·Dv
∣∣
(x0,t0)

)
.

The last term simplifies a little by using the first derivative conditions:

DZ
∣∣∣
(x0,y0,t0)

(e1,e2) = Dv
∣∣
(y0,t0)

(e2)−Dv
∣∣
(x0,t0)

(e1)−ϕ
′ y0− x0

|y0− x0|
· (e2− e1),

from which it follows that Dv|(x0,t0) = Dv|(y0,t0) = ϕ ′ y0−x0
|y0−x0| . This gives

∂Z
∂ t

= ∆u(y, t)−∆u(x, t)+2ϕ
′
(

D logu0
∣∣
(y0,t0)

−D logu0
∣∣
(x0,t0)

)
· y0− x0

|y0− x0|
.

So the extra piece of information we need is control on this extra term. It was proved
by Brascamp and Lieb that the first eigenfunction ϕ0 has concave logarithm, and this
implies the extra term is non-positive if we make the choice u0 = ϕ0e−λ0t, so we can
discard it and deduce as before that ω is a subsolution of the 1D heat equation. By
taking ui = ϕie−λit for i = 0,1, this in turn implies the estimate λ1−λ0 ≥ π2

D2 (proved
previously by Yu and Zhong using gradient estimates, building on the initial
groundbreaking work of Singer-Wong-Yau-Yau).

To get a sharp estimate on the gap, we need a sharp estimate on the log-concavity of
the first eigenfunction.



Modulus of concavity and sharp log-concavity 18

Here is the sharp log-concavity estimate that we prove:

Proposition
Let Ω be a convex domain of diameter D, and ϕ0 the first Dirichlet eigenfunction:

∆ϕ0 +Vϕ0 +λ0ϕ0 = 0 on Ω;
ϕ0 = 0 on ∂Ω;
ϕ0 > 0 on Ω,

with V convex. Then

(D logϕ0(y, t)−D logϕ0(x, t)) ·
y− x
|y− x|

≤ −2π

D
tan
(

π|y− x|
2D

)
for all x 6= y in Ω.

Note that equality holds when Ω is an interval [−D/2,D/2], V = 0, and x+ y = 0.
Proof: Two-point maximum principle applied to the difference in the claimed
inequality, using second derivative terms chosen to give equality in the model case
A× [−D/2,D/2].



Proof of the FGC 19

Given the estimate of the last proposition, we deduce that (assuming u0 = ϕ0e−λ0t)
the modulus of continuity satisfies

ωt ≤ ω
′′−2

π

D
tan
(

πs
D

)
ω
′

in the viscosity sense, and this has the explicit solution sin( πs
D )e−

3π2

D2 t coming from

the 1D case. This gives the sharp estimate λ1−λ0 ≥ 3π2

D2 .


