Wichtigste Rechenregeln für (bedingte) Momente

Im Folgenden bezeichnen X, Y, Z beliebige Zufallsvariablen (deren Erwartungswerte und Varianzen existieren) und a, b Skalare (Konstanten) in \mathbb{R} .

Moment	Voraussetzung / Bezeichnung	Formel
Erwartungswert $E[X]$		
	Der Erwartungswert einer Konstanten ist die Konstante selbst:	E[a] = a
	Der Erwartungswert ist linear, d.h.:	E[aX + bY] = aE[X] + bE[Y]
	Falls X, Y stochastisch unabhängig sind, dann gilt:	$E[X \cdot Y] = E[X] \cdot E[Y]$
	Für beliebige X, Y gilt: :	$E[X \cdot Y] = E[X] \cdot E[Y] + Cov(X, Y)$
	Dreiecksungleichung der Erwartungswerte:	$E[X + Y] \le E[X] + E[Y]$
	Jensen-Ungleichung : Sei $g(\cdot)$ stetig und konvex, dann gilt:	$E[g(X)] \ge g(E[X])$
	Law of Iterated Expectations (LIE):	E[E[X Y]] = E[X]
Varianz $Var(X)$	Definition Varianz: $Var(X) = E[(X - E[X])^2]$	Definition Kovarianz: $Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$
	Die Varianz einer Konstanten ist 0:	Var(a) = 0
	Transformationsverhalten der Varianz:	$Var(aX+b) = a^2 Var(X)$
	Transformationsverhalten der Varianz für zwei Zufallsvariablen:	$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$
	Verschiebungssatz:	$Var(X) = E[X^2] - (E[X])^2$
	Verschiebungssatz der Kovarianz:	$Cov(X,Y) = E[XY] - E[X] \cdot E[Y]$
	Transformationsverhalten der Kovarianz:	Cov(aX + bY + c, Z) = aCov(X, Z) + bCov(Y, Z)
Bedingter EW $E[X Y]$		
	Für jede Funktion $g(\cdot)$ gilt:	$E[g(X) X] = g(X)$ (insb. für $g \equiv \operatorname{id}$ gilt: $E[X X] = X$
	Transformationsverhalten des bedingten EWs:	$E[g(X)Y + h(X) X] = g(X) \cdot E[Y X] + h(X)$
	Falls X, Y stochastisch unabhängig sind, dann gilt:	E[X Y] = E[X]
	Law of Iterated Expectations (LIE):	E[X Z] = E[E[X Y,Z] Z]
	Falls $E[Y^2] < \infty$ und $E[g(X)^2] < \infty$, so gelten:	$E[(Y - E[Y X])^2 X] \le E[(Y - g(X))^2 X)]$
		$E[(Y - E[Y X])^2] \le E[(Y - g(X))^2)]$
Bed. Var. $Var(X Y)$		
	Verschiebungssatz der bed. Varianz:	$Var(X Y) = E[(X - E[X Y])^{2} Y] = E[X^{2} Y] - E[X Y]^{2}$
	Verschiebungssatz der bed. Kovarianz:	Cov(X, Y Z) = E[XY Z] - E[X Z]E[Y Z]
	Falls $X = a$, so gilt:	Var(X Y) = 0
	Zerlegungssatz der Varianz:	Var(X) = E[Var(X Y)] + Var(E[X Y])
	Für jede Funktion $g(\cdot)$ gilt:	$Var[g(Y)X Y] = g(Y)^{2}Var(X Y)$
	Für jede Funktion $g(\cdot), h(\cdot)$ gilt:	Cov(g(Z)X, h(Z)Y Z) = g(Z)h(Z)Cov(X, Y Z)
	Erwartungswert und Kovarianzen:	$E[Cov(X,Y Z)] = E[(X - E[X Z]) \cdot (Y - E[Y Z])]$

Wichtigste (Fehl-) Schlüsse für (bedingte) Momente

- 1. $E[Y|X] = E[Y] \Longrightarrow Cov(Y,X) = 0$ Da E[Y|X = x] = f(x) = E[Y] = c für alle x konstant E[Y] ist, hat jegliche Realisation x von X keinen Einfluss auf Y und somit ist Y von X unabhängig.
- 2. $E[Y|X] = 0 \Longrightarrow E[Y] = 0 \land Cov(Y, X) = 0$ Spezialfall des ersten Schlusses, falls $f(x) \equiv 0 = E[Y]$ für alle x schon die "0"-Kostante ist. Falls Y und X schon unabhängig sind, sind sie auch unkorreliert.
- 3. $Cov(Y,X)=0 \not\Longrightarrow E[Y|X]=0$ im Allgemeinen Einfaches Gegenbeispiel: Sei $Y=X^2$ und $E[X]=E[X^3]=0$. Dann gilt

$$Cov(X,Y) = Cov(X,X^2) = \underbrace{E[X^3]}_{=0} - E[X^2] \underbrace{E[X]}_{=0} = 0 \Longrightarrow Cov(X,Y) = 0 \quad \text{ aber } \quad E[Y|X] = E[X^2|X] = X^2 = 0$$

 $Falls\ Y\ und\ X\ unkorreliert\ sind, so\ sind\ sie\ deshalb\ noch\ \textbf{nicht}\ unabhängig\ (insbesondere\ wenn\ quadratische,\ ...\ Einflüsse\ vorliegen).$

- 4. $Cov(X,Y) \neq 0 \Longrightarrow E[Y|X] \neq 0$ im Allgemeinen Begründung: Dies ist die Verneinung der zweiten Aussage (aus $A \Longrightarrow B$ folgt $\neg B \Longrightarrow \neg A$).
- 5. $Cov(X,Y)=0 \land E[Y]=0 \Longrightarrow E[Y\cdot X]=0$ Einfaches Benutzen des Produkts von Zufallsvariablen im Erwartungswert liefert

$$E[Y \cdot X] = \underbrace{E[Y]}_{=0} \cdot E[X] + \underbrace{Cov(Y, X)}_{=0} = 0$$

6. $E[Y] = 0 \implies E[Y|X] = 0$ Einfaches Gegenbeispiel:

Sei $X = M_1 + M_2$ und $Y = M_1$, wobei M_1 und M_2 die unabhängigen Würfe zweier fairer Münzen mit Auszahlungen von -1 und 1 sind, dann:

$$\begin{split} E[X] &= E[M_1 + M_2] = E[M_1] + E[M_2] = 0 + 0 = 0 \\ E[X|Y] &= E[M_1 + M_2|M_1] = M_1 + E[M_2|M_1] \stackrel{\text{ind.}}{=} M_1 + E[M_2] = M_1 = \begin{cases} +1 \\ -1 \end{cases} \neq 0 \end{split}$$