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Transposable element islands facilitate adaptation
to novel environments in an invasive species
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Tobias Weichselgartner1, Carsten Kemena5, Johannes Stökl1, Eva Schultner6, Yannick Wurm7,

Christopher D. Smith8, Mark Yandell3,9, Jürgen Heinze1, Jürgen Gadau10 & Jan Oettler1,*

Adaptation requires genetic variation, but founder populations are generally genetically

depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to

determine how variability is generated. Cardiocondyla obscurior has the smallest of the

sequenced ant genomes and its structure suggests a fundamental role of transposable

elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of

the genome evolve faster than other regions with regard to single-nucleotide variants, gene/

exon duplications and deletions and gene homology. A non-random distribution of gene

families, larvae/adult specific gene expression and signs of differential methylation in TE

islands indicate intragenomic differences in regulation, evolutionary rates and coalescent

effective population size. Our study reveals a tripartite interplay between TEs, life history and

adaptation in an invasive species.
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Depletion of genetic variation is detrimental to species
evolution and adaptation1. Low genetic and phenotypic
variation is common in founder populations, where only

one or a few genotypes are isolated from a source population.
Under such conditions, reduced effective population size (Ne)
should decrease selection efficiency and increase genetic drift,
resulting in only weak selection against mildly deleterious alleles
which can thus accumulate2. These effects should be even stronger
in inbreeding species3 and taxa with generally low Ne such as
social insects4. Despite these constraints on adaptive evolution,
many inbred or selfing species thrive and are able to invade novel
habitats. This raises the question of how genetic variation as the
raw material for adaptation is generated in such systems.

Single-nucleotide substitutions are an important factor in
adaptation5 and species diversification6,7. However, other
structural and regulatory units, such as transposable elements
(TEs) and epigenetic modifications, may act as drivers in adaptation
and evolution8. TEs play a particularly vital role in genome
evolution9 and recurringly generate adaptive phenotypes10–13

primarily through (retro-)transposition14, and secondarily
through ectopic recombination and aberrant transposition15.

The invasive, inbreeding ant Cardiocondyla obscurior (Fig. 1)
provides a suitable model to study how species adapt to novel
habitats in spite of constraints imposed by invasion history, life
history or both. Originally from Southeast Asia, C. obscurior has
established populations in warm climates around the globe from
founder populations that presumably consisted of only one or a
few inbred colonies, each with a few reproductive queens and
several dozen sterile workers. In this species, related wingless
males and females (queens) mate within the colony, after which
queens leave the colony with a group of workers to find a new
nest nearby. While greatly reducing the extent of gene flow
between colonies, this behaviour enables sexual reproduction
within the same colony and allows single founder colonies to
rapidly colonize novel habitats. At the same time, the

combination of prolonged inbreeding with severe genetic bottle-
necks strongly reduces Ne in this species. Under such conditions,
genetic drift is predicted to drastically deplete genetic variation,
thus leaving little for selection to act on.

Here we explore the genomes of C. obscurior from two invasive
populations (Brazil BR and Japan JP) to identify signatures of
divergence on a genomic level and to determine how the species
can rapidly adapt to different habitats. We find clear phenotypic
differences between the populations and strong correlation
between accumulations of TEs (‘TE islands’) and genetic
variation. Our results suggest that TE islands might function as
spring wells for genetic diversification in founder populations of
this invasive species. The distinct organization of TE islands, their
gene composition and their regulation by the genome adds
compelling evidence for the role of TEs as players in differentia-
tion, adaptation and speciation.

Results
Phenotypic differences between BR and JP lineages. Colonies
from the two populations contained similar numbers of workers
(Mann–Whitney U-test¼ 778.5, Z¼ " 0.634, P¼ 0.526; BR:
median¼ 28, quartiles 21.75 and 51.25, n¼ 27 colonies; JP:
median¼ 29, quartiles 16 and 47, n¼ 64), but queen number was
higher in Japan (Mann–Whitney U-test¼ 501, Z¼ " 3.084,
Po0.003; BR: 5 queens, quartiles 3, 8; JP: median¼ 10, quartiles 4
and 19). Body sizes of queens and workers from BR were sig-
nificantly smaller than in JP individuals, yet wingless males did
not differ in any of the measured characters (see Supplementary
Information).

In ants, cuticular chemical compounds play a particular
prominent role in kin recognition, which is crucial for species
integrity but on a deeper level also a requirement for the
maintenance of altruism16. Analysis of cuticular compound
extracts from BR and JP workers showed that compound
composition differed significantly between the two lineages
(multivariate analysis of variance: df¼ 2, F¼ 10.33, R2¼ 0.39,
Po0.001) and samples were classified correctly according to
population of origin in 83.3% of cases (Supplementary Table 1;
Supplementary Fig. 1).

The lineages also differed in behaviour, with BR colonies
being significantly more aggressive towards both workers and
queens from their own lineage, while JP colonies more readily
accepted JP workers and queens (PWorkers JPxJP versus BR#
BR¼ 0.000296, PQueens JP# JP versus BR#BR¼ 7.98e" 07,
Supplementary Fig. 2). Confronted with individuals from the
other lineage, BR colonies were as aggressive as in within-
population encounters (PWorkers BR# JP versus BR#BR¼ 0.39,
PQueens BR# JP versus BR#BR¼ 0.94), while JP colonies
were again significantly less aggressive (PWorkers JP#BR
versus BR#BR¼ 0.000131, PQueens BR# JP versus BR#
BR¼ 1.23e" 07). Testing discrimination against workers of
another ant species, Wasmannia auropunctata, evoked
similarly high aggressive responses in both lineages, suggesting
that the BR and JP populations do not generally differ in their
aggressive potential.

The C. obscurior genome is compact and rich in class I TEs.
Using MSR-CA version 1.4, we produced a 187.5-Mb draft
reference genome based on paired-end sequencing of several
hundred diploid females (454 Titanium FLX sequencing) and a
200-bp library made from five haploid males (Illumina
HiSeq2000; Supplementary Table 2), all coming from a single
Brazilian colony. Automatic gene annotation using MAKER
version 2.20 (ref. 17) was supported by 454 RNAseq data of a
normalized library made from a pool of all castes and

Figure 1 | Two workers of C. obscurior and the remains of a fly. Hidden in
small cavities of plants, the inconspicuous colonies of this species are
frequently introduced to new habitats by global commerce. In spite of
strong genetic bottlenecks, even single colonies with few reproductive
individuals suffice to establish stable populations.
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developmental stages. We filtered the assembly for
prokaryotic scaffolds and reduced the initial 11,084 scaffolds
to 1,854 scaffolds, containing all gene models and a total
of 94.8% (177.9 Mb) of the assembled sequence. The
genome can be accessed under antgenomes.org/ and
hymenopteragenome.org.

The final gene set contains 17,552 genes, of which 9,552 genes
have a known protein domain as detected by IPRScan
(www.ebi.ac.uk/interpro/), and falls within the range of recent
estimates for eight other sequenced ant species18–26. Of all genes,
72.5% have an annotation edit distance of less than 0.5, which is
consistent with a well-annotated genome27 (Supplementary
Table 3).

The C. obscurior genome is the smallest so far sequenced ant
genome18–26. Although there is no physical genome size estimate
for C. obscurior, assembled sequences and physical estimates are
tightly correlated in seven ant genomes (LM in R: R2¼ 0.73,
F1, 5¼ 13.7, P¼ 0.014, from ref. 28), suggesting that C. obscurior
has the smallest genome reported so far for an ant species 29.
Overall, the draft genome size of the analysed sequenced ants is
negatively correlated to relative exon content (GLM in R: df¼ 6,
F¼ 150.55, Po0.001) but not to relative intron content (df¼ 5,
F¼ 0.65, P¼ 0.460; Fig. 2), indicative of stabilizing selection on
coding sequence. In contrast, intron size distribution is diverse
between ant genomes and is not correlated with genome size
(Supplementary Fig. 3; Supplementary Table 4).

We used a custom pipeline (see Supplementary Information) to
identify simple repeats, class I retrotransposons and class II DNA
transposons in C. obscurior, seven ant genomes (Acromyrmex
echinatior (Aech), Atta cephalotes (Acep), Solenopsis invicta (Sinv),
Linepithema humile (Lhum), Pogonomyrmex barbatus (Pbar),
Harpegnathos saltator (Hsal), Camponotus floridanus (Cflo)), the
parasitic wasp Nasonia vitripennis (Nvit) and the honeybee Apis
mellifera (Amel). Across the analysed ants, genome size is
significantly correlated with relative simple repeat content (lm,
R2¼ 0.66, F¼ 11.83, P¼ 0.014; Fig. 2) but not with class I and
class II TE content. However, it appears that the larger genomes
contain more relative class II sequence. Relative class I retro-
transposon content was highest in C. obscurior (7.6 Mb, 4.31%,
Supplementary Fig. 4) and in particular, many class I non-LTR
retrotransposons (for example, 14 types of LINEs) and several
types of LTR transposons (Ngaro, Gypsy, DIRS and ERV2), TIR
elements (for example, hAT, MuDR, P) and Helitrons are more
abundant in C. obscurior (Supplementary Table 5).

Genomic signatures of an inbred lifestyle. On the basis of TE
content calculations for 1 and 200 kb sliding windows, we iden-
tified 18 isolated ‘TE islands’ located in ‘LDR’ (low-density
regions) in the C. obscurior genome. These TE islands were
defined as containing TE accumulations in the 95–100% quantile
within scaffolds over 200 kb (87 scaffolds, representing 96.02% or
170.8 Mb of the assembly). In total, TE islands cover 12.78 Mb of

sequence (7.18% of total sequence) and range between 0.19 and
1.46 Mb in size. The TE islands contain 27.54% (4.92 Mb) of the
assembly-wide TE sequence (17.87 Mb), 6.6% of all genes (1,160),
and have reduced exon content (TE islands 87.0 exon bp kb" 1,
LDRs 124.5 exon bp kb" 1). Note that some larger scaffolds
contain more than one TE island.

Retroelements of the superfamilies BEL/Pao, DIRS, LOA/Loa,
Ngaro, R1/R2 and RTE as well as DNA transposons of the
superfamilies Academ, Kolobok-Hydra, Maverick, Merlin, on and
TcMar-Mariner/-Tc1 populate TE islands with significantly
higher copy numbers than other elements (Fisher’s exact test,
false discovery rate o0.05, Fig. 3, Supplementary Table 6).
Furthermore, both class I and class II elements show a length
polymorphism, with elements in TE islands being significantly
longer compared with elements in LDRs (U-tests,
W¼ 109089018, Po2e" 16 for class I and W¼ 152340067,
Po2e" 16 for class II, Fig. 4a, Supplementary Fig. 5).

We also assessed the genome-wide TE distributions for seven
published ant genomes, Amel v4.5 and Nvit v2.0 (Fig. 5).
The smaller ant genomes (Pbar, Lhum and Cflo) and Amel are
similar in TE sequence distribution. In contrast, the larger
genomes (Aech, Acep, Sinv and Hsal) are more variable,
have higher median TE content and a much broader and tailed
TE frequency distribution with longer stretches of high or
low TE content. The genome of C. obscurior is distinct from the
other ant genomes, with low TE content in LDRs but exceptional
clustering with high TE densities in TE islands. The genome
of the inbred wasp N. vitripennis contains regions with up
to 60% TE content that are surrounded by LDRs containing
much less TE sequence (B10%), resembling the pattern
observed in C. obscurior.

TE islands diverge faster than LDRs in the two populations.
We mapped B140 Gb of genomic DNA Illumina reads (B60#
coverage for each population) from pools of 30 (BR) and 26 (JP)
male pupae, respectively, against the reference genome (BWA;
bio-bwa.sourceforge.net) and analysed the local coverage ratio to
detect genetic divergence. Deviations from the mean coverage
ratio (Fig. 6) are in part caused by sequence deletions, insertions
and duplications30. Such variations are particularly frequent in
TE islands (Figs 4b and 6), suggesting accelerated divergence
within islands (median deviation from mean coverage ratio:
0.288 in TE Islands, 0.163 in LDRs; U-test, W¼ 640300902;
Po2e" 16).

We retrieved SNV (single-nucleotide variants) calls using
consensus calls from samtools (samtools.sourceforge.net) and the
GATK (broadinstitute.org/gatk/). Although TE islands only
comprise 7.18% of the genome, they combine 15.59% (86,236
of 553,052) of all SNV calls. Given that we sequenced haploid
males from highly inbred lineages, heterozygous SNVs should be
rare. A large fraction of heterozygous SNVs in both lineages are
within TE islands (62.95% of 62,879 in BR, 50.52% of 98,353 in
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JP), while rates of homozygous calls (Fig. 6) are not increased
(11.88% of 16,277 in BR, 6.91% of 445,316 in JP). High numbers
of false positive heterozygous SNVs calls can arise in duplicated
regions that collapsed into a single locus due to misassemblies31.
Accordingly, such SNVs can be identified by a twofold increase in
coverage and in fact mark diverging duplicated loci within the
same lineage (Fig. 4c).

Genes in TE islands should also show signatures of accelerated
divergence from orthologues if overall sequence evolution is
increased in these regions. Indeed, BLASTp searches against
seven ant proteomes produced significantly lower bit scores for
genes within TE islands when compared with genes in LDRs
(Fig. 4d, U-test, W¼ 120460260, Po2e" 16). In accordance,
SNV annotation revealed higher rates of non-synonymous
substitutions between the BR and JP lineage in TE island genes
(Fig. 4e, U-test, W¼ 923754, Po2e" 16). Surprisingly, however,
on average, TE island genes contained less synonymous SNVs
than LDR genes (LDR 0.67 kb" 1, TE island 0.42 kb" 1, U-test,
W¼ 10743397, Po2e" 16).

Copy number variation within and between TE islands. We
inspected 512 candidate loci (155 in TE islands) of 1 kb length by
plotting the coverage of each lineage relative to SNVs, genes, and
TEs at the respective position, to find genes potentially affected by
deletion or copy number variation events and compiled a list of
89 candidate genes (Supplementary Table 7). Experimental proof-
of-principle was conducted by PCR and Sanger sequencing for
two deletion candidates (Cobs_13563 and Cobs_01070) and by
real-time quantitative PCR for four duplication candidates
(Cobs_13806, Cobs_17872, Cobs_13486, and Cobs_16853)
(Supplementary Fig. 7). A majority of these genes are located in
TE islands (61.8%) and 34 genes show at least weak expression in

BR individuals in RNAseq data (see below). The affected genes
play roles in processes that may be crucial during invasion of
novel habitats, such as chemical perception, learning and insec-
ticide resistance. In particular, four different odorant/gustatory
receptor genes show signs of either multiple exon (Cobs_05921,
Cobs_13418, Cobs_14265) or whole-gene duplication
(Cobs_17892). A gene likely involved in olfactory learning,
Cobs_13711, a homologue to pst32, also shows signs of
duplication. Three genes homologous to fatty acid synthase
(FAS) genes, a key step in cuticular odour production, contain
partial deletions (Cobs_16510, Cobs_14262) or duplications
(Cobs_15866). Furthermore, we found differences in genes
associated with insecticide response (Cobs_00487, a homologue
of nAChRa6 (FBgn0032151) (ref. 33) and Cobs_17834, coding for
a homologue to Cyp4c1 (EFN70878.1) (ref. 34). Other key genes
affected are associated with circadian rhythm (Cobs_17789,
homologue to per (FBgn0003068)), caste determination
(Cobs_01070, with homology to Mrjp1 (gi406090) (ref. 35),
development (Cobs_17755, coding for a homologue of VgR
(Q6X0I2.1) (ref. 36) and aging (Cobs_14758, with homology to
Mth2 (FBgn0045637) (ref. 37).

De novo assembly of B23M Illumina paired-end reads from
the JP lineage that could not be mapped to the BR reference
genome resulted in 17 contigs after filtering with highly
significant BLASTx hits against proteins of other ants, suggesting
that these conserved sequences were lost in the BR lineage instead
of being gained in the JP lineage. According to functional
annotation, among others these contigs code for homologues
involved in development (Vitellogenin-like (XP_003689693))38,
cellular trafficking (Sorting nexin-25 (EGI65030))39, immune
response (Protein Toll (EGI66069))38 and neuronal organization
(Peripheral-type benzodiazepine receptor-associated protein 1
(EFN68490))40 (Supplementary Table 8).
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Gene composition and regulation of TE islands. Increased TE
activity may incur costs to fitness by disrupting gene function.
A two-tailed Gene Ontology (GO) enrichment analysis revealed
that 59 GO terms associated with conserved processes (for
example, cytoskeleton organization, ATP binding, organ mor-
phogenesis) are under-represented in TE islands, while 18 GO
terms are enriched (Supplementary Tables 9 and 10). Four of the
over-represented terms relate to olfactory receptors (ORs;
GO:0004984, GO:0005549, GO:0050911, GO:0007187) and two
terms relate to FAS genes (GO:0005835, GO:0016297). The
remaining 12 terms most likely relate to TE-derived genes.

Gene body CpG depletion as a result of increased CpG to
TpG conversion due to cytosine methylation is a measure for
germline methylation (that is, epigenetic regulation) in past
generations. In TE island genes, the exon-wide median observed/
expected (o/e) CpG ratio is significantly lower than in other genes
(t-test, TE island genes: 1.05, LDR genes: 1.20, Po1e" 16).
However, both sets of genes show strikingly different correlations
of expression and o/e CpG values (Fig. 4f). For LDR genes,
o/e CpG values are high in moderately expressed genes and
low in highly expressed genes. In contrast, in TE islands, weakly
to moderately expressed genes contain less CpG dinucleotides,
while highly expressed genes have higher o/e CpG values.
To further identify traces of differential regulation of TE islands,
we compared the exon o/e CpG values between the lineages
by calculating BR/JP ratios for each exon’s o/e CpG values
and found higher variance in BR/JP ratios in TE islands than in
LDRs (Fig. 4g, F-test, F¼ 0.136, Po2e" 16, ratio of
variances¼ 0.136).

Finally, to assess whether gene expression levels differed
between LDRs and TE islands, we generated B14 and B17 Gb
transcriptomic RNAseq data of seven queens and seven queen-
destined larvae (third larval stage), respectively, from the BR
lineage. We estimated mean normalized expression values for
each gene using DESeq2 (bioconductor.org/packages/release/
bioc/html/DESeq2.html), revealing that expression in TE islands
was much lower than in LDRs (median expression of all LDR
genes¼ 25.45; in TE islands: 0.49; U-test, W¼ 14461310,
Po2e" 16). While larvae and adult queens did not differ in
the expression of LDR genes (median expression in
queens¼ 21.16; in larvae¼ 23, 72; U-test, W¼ 133301709,
P¼ 0.221), TE island genes were more expressed in adult queens
(median expression in queens¼ 0.84; in larvae¼ 0; W¼ 1031038,
Po2e" 16; Fig. 7, see Supplementary Fig. 6 for details on
differential expression between queen and larvae).

Discussion
C. obscurior is a textbook example for successful biological
invasion. Its small size allows for interspecific avoidance, it can
rapidly establish colonies in disturbed habitats, and multiple
generations per year allow for fast adaptation. While variation in
CHCs and body size between the populations point to
adaptations to different environments, higher queen number in
the JP lineage is likely correlated with reduced intraspecific
aggression.

The small genome of C. obscurior differs markedly from the
other analysed ant genomes in TE distribution and over-
abundance of several class I subclasses. Importantly, the genome
contains low frequencies of TEs in LDRs but well-defined islands
with high densities of TEs. In these islands, TEs are on average
longer than in LDRs, suggesting overall higher TE activity41.
Differences in mutation rates and sequence divergence between
LDRs and TE islands reveal distinct evolutionary dynamics acting
within the C. obscurior genome. Moreover, in TE islands, key
genes are removed and the majority of genes is less expressed in
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larvae than adult queens. The non-random distribution of TEs
suggests that intragenomic differences in selection efficiency
against TEs may have further supported the formation of such
locally confined TE accumulations.

Inbreeding can facilitate the accumulation of TEs3 and
repeated exposure to stress induced by novel environmental
conditions can further amplify TE proliferation42. Small Ne is
expected to increase the effects of genetic drift and in turn reduce
selection efficiency against mildly deleterious mutations2. Under
such conditions, local accumulations of TEs might have formed
in genomic regions under relaxed selection. Similarly, a reduction
in Ne in inbred Drosophila leads to a shift in the equilibrium
between TE proliferation and purifying selection against TEs,
thus allowing TEs to accumulate43.

How can we explain extensive proliferation and diversification
of TEs within islands, but purifying selection against TEs in
LDRs? Coalescent effective population size of a genomic region is
positively correlated with its recombination frequency and thus
the local efficiency of selection and mutation rate11. The initial
foundation of TE islands could hence be facilitated in genomic
regions with low recombination frequency, providing a refugium
of relaxed selection for TE insertions. Indeed, elevated rates of
non-synonymous substitutions suggest relaxed selection on TE
island genes. Increased frequency of DNA repair processes as a
consequence of higher DNA transposition frequencies in TE
islands should lead to more errors in DNA replication and double
strand break repair44 in comparison with LDRs. Large-scale
mutations on the other hand, such as exon or gene duplications/

deletions or gene shuffling, can directly be introduced during TE
transposition45. TE islands may frequently produce genetic
novelty and eventually, by chance, but despite high stochastic
drift, adaptive phenotypes, corroborating the view of TEs as
genetic innovators.

The list of genes affected by duplications or deletions contains
a number of candidates that might be key to the divergence of the
lineages. For example, differences in homologues to genes
involved in larval development (for example, Mrjp1) might
explain body-size differences. Two other candidates, Cobs_00487
and Cobs_17834, show homology to genes that are involved in
pesticide resistance against Chlorpyrifos and Imidacloprid
(nAChRa6) and Deltamethrin (Cyp4c) in different invertebrate
species46–49. Imidacloprid treatment of gall wasp infested
Erythrina variegate coral trees of the Japan habitat occurred at
least once the year before collection of the colonies in 2010
(personal communication S. Mikheyev). In the Brazil habitat,
Chlorpyrifos, Deltamethrin and the organophosphate
Monocrotophos have routinely been used over the last 10 years
(personal communication J.H.C. Delabie).

Furthermore, several within-island genes involved in the
production (FAS50) and perception (ORs) of chemical cues
contained deletions or duplications in one of the lineages. These
results suggest that variation in FAS genes may be responsible for
diverging CHC profiles in C. obscurior51, while variation in OR
genes affects olfactory perception. Chemosensory neurons express
highly sensitive ORs52, which are particularly diverse53 and under
strong selection in ants54. Gene loss and duplication in the OR
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gene family has been significantly frequent55 and differences are
assumed to be shaped by adaptive processes in response to a
species’ ecological niche56,57. Intriguingly, the diversification of
OR genes is thought to be largely caused by gene duplications and

interchromosomal transposition58, two mechanisms known to be
by-products of TE activity. While the distinct patterns of kin
recognition and aggressive behaviour in the two lineages of
C. obscurior may in part be explained by TE-mediated variation
in these genes, they also suggest lineage-specific dynamics of the
interaction of phenotype and genome evolution. Reduced
aggression between colonies in the JP lineage should promote
gene flow by exchange of reproductives and thus increase Ne,
heterozygosity, and the efficiency of sexual recombination,
facilitating the spread of novel arising genotypes. Our findings
contrast the view of reduced aggression between colonies of
invasive ants59, but so far it is unclear whether lineage-specific
differences are caused by variation in perception or downstream
neuronal processes.

Mechanisms controlling TEs are as old as prokaryotes9 and in
fact most TEs are epigenetically silenced45,60, through either
methylation, histone modifications61 or RNAi62. Even though
many genes in TE islands are expressed, the overall expression is
significantly lower than in LDRs. In line with previous
correlations on methylation and expression in eusocial
insects63,64, o/e CpG ratios in C. obscurior LDR genes are
negatively correlated with expression. However, TE island genes
do not follow this trend, in that they are weakly expressed while
having low o/e CpG rates. Proximity to TEs can increase gene
body methylation65, which could explain stronger methylation of
TE island genes and thus CpG depletion. Also, relaxed selection
in island genes should in general increase fixation frequency of
base mutations, including CpG to TpG conversions thus
depleting CpG content. Gene expression differences in TE
island genes between larvae and adult queens suggest stronger
regulation of these potentially disruptive genes during the
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sensitive developmental phase. Finally, key regulatory genes are
under-represented in TE islands. These gene set differences
between TE islands and LDRs can either be explained by selection
processes, removing vital genes from linkage to TE islands or by
selective restriction of TE accumulations to genomic regions
devoid of such genes.

The current understanding of TE activity dynamics in genomes is
that periods of relative dormancy are followed by bursts of activity,
often induced by biotic and abiotic stress, such as exposure to novel
habitats. Frequent TE transposition during bursts leads to genomic
rearrangements, thus producing new genetic variants and eventually
even promoting speciation66–69. TE dynamics can also be strongly
affected by mating system3,70–72, and the life history of C. obscurior
likely challenges the genomic integrity resulting in genomic regions
with over 50% TE content. In conclusion, TE dynamics in C.
obscurior seem to have shifted from a serial to a parallel mode,
where a fraction of the genome is reshaped repeatedly in a
continuous burst of TE activity. Strikingly, the inbred parasitoid
wasp N. vitripennis has similar TE frequency patterns suggesting
that similar life history strategies and their consequences on Ne and
drift can lead to convergent genomic organization. TEs represent a
major force in evolution, contributing to the generation of genetic
variation especially in species confronted with hurdles like
inbreeding or repeated bottlenecks. They furthermore seem to
play an important role in the rapid adaption of invasive species to
novel environments, making it particularly crucial to understand
their origin, function and regulation.

Methods
Detailed methods and accompanying Supplementary Tables 11 to 16 are available
as Supplementary Information online.

Organisms. Live colonies of C. obscurior were collected from aborted fruits on
coconut trees (Cocos nucifera) in Brazil (collected in 2009) and from bark cavities
in coral trees (Erythrina sp.) in Japan (collected in 2010). The colonies were
transferred to Regensburg and placed in plastered petri dishes. Food (honey-soaked
shreds of paper; Drosophila or small chunks of Periplaneta americana) and water
were provided every 3 days and colonies were kept in incubators under constant
conditions (12 h 28 !C light/12 h 24 !C dark). All animal treatment guidelines
applicable to ants under international and German law have been followed. Col-
lecting the colonies that form the basis of the laboratory population used in this
study was permitted by the Brazilian Ministry of Science and Technology (RMX
004/02). No other permits were required for this study.

De novo genome assembly. The reference genome is based on one colony that
was kept under strict inbreeding in the lab for four generations before extractions.
Whole DNA was extracted with CTAB. We extracted DNA from B900 ants, which
were pooled to be sequenced with 454 technology. Extracts of 5, 10 and 30 Bra-
zilian males and 26 Japanese males, respectively, were used for Illumina libraries.

We generated 200 and 500 bp insert libraries with Illumina’s TruSeq DNA
sample preparation kits from 5 mg of total DNA. Quality control and library
preparation were carried out by the KFB sequencing centre of the University
Regensburg, sequencing runs were performed by Illumina (Hayward, USA) on a
HiSeq2000. Quality control, library preparation and sequencing of 8 and 20 kb long
paired end libraries (454, Roche) were carried out by Eurofins MWG Operon
(Ebersberg, Germany). Extracted DNA was fragmented into the appropriate
fragment sizes (8 and 20 kb) using the HydroShear DNA Shearing Device
(GeneMachine). Further library preparation was performed according to ‘GS FLX
Titanium Paired End Library Prep 20þ 8 kb Span Method Manual’ before
sequencing on a GS FLX Titanium (Roche).

The de novo genome assembly was created with MSR-CA version 1.4 open
source assembler (University of Maryland genome assembly group at ftp://
ftp.genome.umd.edu/pub/MSR-CA/). The MSR-CA assembler combines a
deBruijn graph strategy with the traditional Overlap-Layout-Consensus employed
by various assembly programmes for Sanger-based projects (Arachne, PCAP,
CABOG). The MSR-CA uses a modified version of CABOG version 6.1 for
contiging and scaffolding. The combined strategy allowed us to natively combine
the short 100 bp Illumina reads and longer 454 reads in a single assembly without
resorting to an approach that would require one to assemble each type of data
separately and then creating a combined assembly.

Mapping. For each lineage, we randomly sampled 140 M 100 bp reads from
libraries generated from 26 (JP) and 30 (BR) male pupae. Raw reads were

parsed through quality filtration and adapter trimming (Trimmomatic v0.22
(usadellab.org/cms/?page=trimmomatic), options: HEADCROP:7
LEADING:28 TRAILING:28 SLIDINGWINDOW:10:10) and mapped against the
BR reference genome with BWA (bio-bwa.sourceforge.net) and Stampy v1.0.21
(www.well.ox.ac.uk/project-stampy).

Variant calling. SNV calling was carried out combining samtools (samtools.
sourceforge.net) and the GATK (www.broadinstitute.org/gatk/) retaining only
those variants called consistently by both tools. The final variant set of 553 052
SNVs and 67,987 InDels was stored in a single VCF file. SNVs were annotated with
SNPeff (snpeff.sourceforge.net) to identify non-synonymous and synonymous
substitutions.

Calculation of sliding windows. One kb windows of different stats (TEs, exons,
SNPs, coverage) were calculated for all scaffolds based on GFF, VCF and SAM files.
For GFF and VCF files, custom bash and perl scripts were used to calculated TE
and exon bases per 1 kb, and variant calls per 1 kb. Coverage per 1 kb was calcu-
lated from SAM files, using samtools’ depth algorithm and custom bash and perl
scripts. Subsequent processing, calculating of 200 kb sliding windows and plotting
of the data was performed with R v3.0.0 (r-project.org).

Gene expression analysis with RNAseq. We extracted whole RNA with the
RNeasy Plus Micro kit (Qiagen). Single end Illumina libraries from amplified RNA
(Ovation RNAseq system V2) were generated following the manufacturers protocol
(Ovation Rapid Multiplexsystem, NuGEN). Sequencing on an Illumina HiSeq1000
at the in-house sequencing centre (KFB, Regensburg, Germany) generated B20M
100 bp reads per sample (Supplementary Table 16). Raw reads were filtered for
adapter contamination (cutadapt, code.google.com/p/cutadapt/), parsed through
quality filtration (Trimmomatic v0.27, options: LEADING:10 TRAILING:10
SLIDING:4:10 MINLEN:15), and mapped against the reference genome using the
tophat2 (v2.0.8, ccb.jhu.edu/software/tophat/index.shtml) and bowtie2 (v2.1.0,
bowtie-bio.sourceforge.net/bowtie2/index.shtml) package (--b2-sensitive mode,
mapping rate B50%). Gene expression analysis was carried out with DESeq2
(bioconductor.org/packages/release/bioc/html/DESeq2.html), based on count
tables produced with HTSeq (www-huber.embl.de/users/anders/HTSeq/doc/over-
view.html) against the Cobs1.4 MAKER annotation (Supplementary Table 16).
Genes were considered to be differentially expressed at a false discovery rate o0.05
and expression values are reported as untransformed base means of read counts per
treatment group, after correcting for library size differences (‘size factor
normalization’).
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